Annex E

Emissions Inventory

JUBILEE PHASE 1 DEVELOPMENT EIA: EMISSIONS CALCULATIONS

	Equipment		Rating				Emission Dates (h/M/DT)					Estimated Topo									
Operation	Diesel Engines Natural Gas Engines		hp hp	Units	Runtii	me	Emission Rates Ib/MMBTU				Estimated Tons										
	Burners	Fuel Used	MMbtu/h		h/d	days	PM10	SOx	NOx	VOC	CO	CO2	CH4	PM10	SOx	NOx	VOC	CO	CO2	CH4	CO2 equivalent
Well Drilling Erik Raude	Prime Mover Prime Mover	Diesel Diesel	10,200 10,200	hp hp	24 24	1092 1092	0.057 0.057	2.020 2.020	3.200 3.200	0.090 0.090	0.850 0.850	165.000 165.000	0.090 0.090	22.094 22.094	778.893 778.893	1,233.890 1,233.890	34.703 34.703	327.752 327.752	63,622.467 63,622.467	34.703 34.703	64,420.639 64,420.639
	Prime Mover	Diesel	10,200	hp	24	1092	0.057	2.020	3.200	0.090	0.850	165.000	0.090	22.094	778.893	1,233.890	34.703	327.752	63,622.467	34.703	64,420.639
	Prime Mover	Diesel	10,200	hp	24	1092	0.057	2.020	3.200	0.090	0.850	165.000	0.090	22.094	778.893	1,233.890	34.703	327.752	63,622.467	34.703	64,420.639
	Prime Mover	Diesel	10,200	hp	24 24	1092	0.057	2.020	3.200	0.090	0.850	165.000	0.090	22.094	778.893	1,233.890	34.703	327.752	63,622.467	34.703	64,420.639
	Prime Mover Vessels (work 1)	Diesel MGO	10,200 8,500	hp hp	24	1092 1092	0.057 0.400	2.020 9.000	3.200 10.600	0.090 0.400	0.850 2.200	165.000 717.000	0.090 0.008	22.094 128.530	778.893 2,891.930	1,233.890 3,406.051	34.703 128.530	327.752 706.916	63,622.467 230,390.447	34.703 2.571	64,420.639 230,449.571
	Vessels (work 2)	MGO	8,500	hp	24	1092	0.200	8.000	13.200	0.200	1.100	652.000	0.004	64.265	2,570.605	4,241.498	64.265	353.458	209,504.284	1.285	209,533.846
Total (E Raude)	Vessels (AHTS) Entire Period - 1092 d	MGO	10,000	hp	24	1092	0.400	9.000	10.600	0.400	2.200	717.000	0.008	151.212 476.573	3,402.271 13,538.165	4,007.119 19,058.010	151.212 552.226	831.666 3,858.553	271,047.585 1,092,677.116	3.024 215.099	271,117.142 1,097,624.396
Well Drilling	Prime Mover	Diesel	5,096	hp	24	266	0.057	2.020	3.200	0.090	0.850	165.000	0.090	2.689	94.791	150.164	4.223	39.887	7,742.813	4.223	7,839.950
Blackford Dolphin	Prime Mover Prime Mover	Diesel Diesel	5,096 5,096	hp hp	24 24	266 266	0.057 0.057	2.020 2.020	3.200 3.200	0.090 0.090	0.850 0.850	165.000 165.000	0.090 0.090	2.689 2.689	94.791 94.791	150.164 150.164	4.223 4.223	39.887 39.887	7,742.813 7,742.813	4.223 4.223	7,839.950 7,839.950
	Prime Mover	Diesel	5,096	hp	24	266	0.057	2.020	3.200	0.090	0.850	165.000	0.090	2.689	94.791	150.164	4.223	39.887	7,742.813	4.223	7,839.950
	Vessels (work 1) Vessels (work 2)	MGO MGO	8,500 8,500	hp hp	24 24	266 266	0.400 0.200	9.000 8.000	10.600 13.200	0.400 0.200	2.200 1.100	717.000 652.000	0.008 0.004	31.309 15.654	704.445 626.173	829.679 1,033.185	31.309 15.654	172.198 86.099	56,120.750 51,033.095	0.626 0.313	56,135.152 51,040.296
	Vessels (AHTS)	MGO	10,000	hp	24	266	0.400	9.000	10.600	0.400	2.200	717.000	0.008	36.834	828.758	976.093	36.834	202.585	66,024.412	0.737	66,041.355
Total (B Dolphin) Completion	Entire Period - 266 d Prime Mover	Diesel	10,200	hp	24	425	0.057	2.020	3.200	0.090	0.850	165.000	0.090	94.552 8.599	2,538.539 303.141	3,439.612 480.223	100.690 13.506	620.431 127.559	204,149.507 24,761.491	18.569 13.506	204,576.602 25,072.135
Erik Raude	Prime Mover	Diesel	10,200	hp	24	425	0.057	2.020	3.200	0.090	0.850	165.000	0.090	8.599	303.141	480.223	13.506	127.559	24,761.491	13.506	25,072.135
	Prime Mover Prime Mover	Diesel Diesel	10,200 10,200	hp	24 24	425 425	0.057 0.057	2.020 2.020	3.200 3.200	0.090 0.090	0.850 0.850	165.000 165.000	0.090 0.090	8.599 8.599	303.141 303.141	480.223 480.223	13.506 13.506	127.559 127.559	24,761.491 24,761.491	13.506 13.506	25,072.135 25,072.135
	Prime Mover Prime Mover	Diesel	10,200	hp hp	24 24	425	0.057	2.020	3.200	0.090	0.850	165.000	0.090	8.599 8.599	303.141	480.223	13.506	127.559	24,761.491	13.506	25,072.135
	Prime Mover	Diesel	10,200	hp	24	425	0.057	2.020	3.200	0.090	0.850	165.000	0.090	8.599	303.141	480.223	13.506	127.559	24,761.491	13.506	25,072.135
	Vessels (work 1) Vessels (work 2)	MGO MGO	8,500 8,500	hp hp	24 24	425 425	0.400 0.200	9.000 8.000	10.600 13.200	0.400 0.200	2.200 1.100	717.000 652.000	0.008 0.004	50.023 25.012	1,125.522 1,000.464	1,325.615 1,650.766	50.023 25.012	275.128 137.564	89,666.612 81,537.839	1.000 0.500	89,689.622 81,549.345
	Vessels (AHTS)	MGO	10,000	hp	24	425	0.400	9.000	10.600	0.400	2.200	717.000	0.004	58.851	1,324.144	1,559.547	58.851	323.680	105,490.132	1.177	105,517.203
Total (E Raude)	Entire Period - 425 d													185.480	5,268.975	7,417.266	214.923	1,501.726	425,263.529	83.715	427,188.982
Flowline/Umbilical/Injector installation	PipelineVessel	MGO	20,000	hp	24	60	0.400	9.000	10.600	0.400	2.200	717.000	0.008	16.617	373.876	440.343	16.617	91.392	29,785.449	0.332	29,793.093
	Supply vessel	MGO	8,500	hp	24	30	0.200	8.000	13.200	0.200	1.100	652.000	0.004	1.766	70.621	116.525	1.766	9.710	5,755.612	0.035	5,756.424
	Pipelay umbilical Vessel Light Construction Vessel	MGO MGO	16,000 13,400	hp hp	24 24	81 182	0.400 0.400	9.000 9.000	10.600 10.600	0.400 0.400	2.200 2.200	717.000 717.000	0.008 0.008	17.946 33.771	403.786 759.841	475.570 894.923	17.946 33.771	98.703 185.739	32,168.285 60,533.961	0.359 0.675	32,176.540 60,549.495
	Pre-commissioning vessel	MGO	13,400	hp	24	14	0.400	9.000	10.600	0.400	2.200	717.000	0.008	2.598	58.449	68.840	2.598	14.288	4,656.459	0.052	4,657.653
	Heavy Lift Vessel	MGO	20,000	hp	24	150	0.200	8.000	13.200	0.200	1.100	652.000	0.004	20.771	830.835	1,370.878	20.771	114.240	67,713.085	0.415	67,722.639
	Heavy Lift Vessel Heavy Lift Vessel	MGO MGO	20,000 20,000	hp hp	24 24	59 16	0.200	8.000 8.000	13.200 13.200	0.200 0.200	1.100 1.100	652.000 652.000	0.004 0.004	8.170 2.216	326.795 88.622	539.212 146.227	8.170 2.216	44.934 12.186	26,633.813 7,222.729	0.163 0.044	26,637.571 7,223.748
	Heavy Lift Vessel	MGO	20,000	hp	24	56	0.200	8.000	13.200	0.200	1.100	652.000	0.004	7.754	310.179	511.795	7.754	42.650	25,279.552	0.155	25,283.119
T-1-1	Crew Boat	MGO	1,000	hp	24	187	0.200	8.000	13.200	0.200	1.100	652.000	0.004	1.295	51.789	85.451	1.295	7.121	4,220.782	0.026	4,221.378
FPSO Installation	Entire period - 365 d Tug (tow vessel)	MGO	7,000	hp	24	120	0.400	9.000	10.600	0.400	2.200	717.000	0.008	112.902 11.632	3,274.793 261.713	4,649.765 308.240	112.902 11.632	620.962 63.974	263,969.726 20,849.814	2.258 0.233	264,021.661 20,855.165
	Tug (tow vessel)	MGO	7,000	hp	24	2 2	0.200	8.000	13.200	0.200	1.100	652.000	0.004	0.097	3.877	6.397	0.097	0.533	315.994	0.002	316.039
	Tug (tow vessel) Tug (tow vessel)	MGO MGO	5,600 5,600	hp hp	24 24	2	0.200 0.200	8.000 8.000	13.200 13.200	0.200 0.200	1.100 1.100	652.000 652.000	0.004 0.004	0.078 0.078	3.102 3.102	5.118 5.118	0.078 0.078	0.426 0.426	252.796 252.796	0.002 0.002	252.831 252.831
	Tug (tow vessel)	MGO	4,200	hp	24	2	0.200	8.000	13.200	0.200	1.100	652.000	0.004	0.058	2.326	3.838	0.058	0.320	189.597	0.001	189.623
	AHV/AHTS Supply vessel	MGO MGO	10,000 8,500	hp hp	24 24	120 120	0.400 0.200	9.000 8.000	10.600 13.200	0.400 0.200	2.200 1.100	717.000 652.000	0.008 0.004	16.617 7.062	373.876 282.484	440.343 466.099	16.617 7.062	91.392 38.842	29,785.449 23,022.449	0.332 0.141	29,793.093 23,025.697
Total	Entire period - 2d tow, 120 d install													35.621	930.480	1,235.153	35.621	195.914	74,668.894	0.712	74,685.279
Production FPSO Odoh	Recip. (Duel fuel) Recip. (Duel fuel)	Diesel Diesel	5,500 5,500	hp hp	12 12	365 365	0.057 0.057	2.020 2.020	3.200 3.200	0.090 0.090	0.850 0.850	165.000 165.000	0.090 0.090	1.991 1.991	70.191 70.191	111.193 111.193	3.127 3.127	29.536 29.536	5,733.413 5,733.413	3.127 3.127	5,805.342 5,805.342
	Recip. (Duel fuel)	Diesel	5,500	hp	12	365	0.057	2.020	3.200	0.090	0.850	165.000	0.090	1.991	70.191	111.193	3.127	29.536	5,733.413	3.127	5,805.342
	Recip. (emerg) Recip. (crane)	Diesel Diesel	5,500 527	hp hp	12 12	7 365	0.057 0.310	2.020 0.290	3.200 4.410	0.090 0.360	0.850 0.950	165.000 164.000	0.090 0.360	0.038 1.032	1.346 0.966	2.132 14.683	0.060 1.199	0.566 3.163	109.956 546.036	0.060 1.199	111.335 573.604
	Recip. (crane)	Diesel	527	hp	12	365	0.310	0.290	4.410	0.360	0.950	164.000	0.360	1.032	0.966	14.683	1.199	3.163	546.036	1.199	573.604
	Recip (shipbrd) Recip (shipbrd)	Diesel Diesel	5,500 5,500	hp hp	2	365 365	0.057 0.057	2.020 2.020	3.200 3.200	0.090 0.090	0.850 0.850	165.000 165.000	0.090 0.090	0.332 0.332	11.698 11.698	18.532 18.532	0.521 0.521	4.923 4.923	955.569 955.569	0.521 0.521	967.557 967.557
	Recip. (tanker)	Diesel	20,000	hp	24	37	0.057	2.020	3.200	0.090	0.850	165.000	0.090	1.468	51.747	81.976	2.306	21.775	4,226.875	2.306	4,279.903
	Supply/contingency vessel Hold back vessel	MGO MGO	4,200 4,200	hp hp	18 18	365 365	0.200 0.400	8.000 9.000	13.200 10.600	0.200 0.400	1.100 2.200	652.000 717.000	0.004 0.008	7.960 15.921	318.418 358.220	525.389 421.903	7.960 15.921	43.782 87.565	25,951.040 28,538.183	0.159 0.318	25,954.701 28,545.507
	Multi Service Vessel (MSV) with daughter vessel	MGO	4,200 8,500	hp	18	365	0.400	9.000	10.600	0.400	2.200	717.000	0.008	32.221	724.969	421.903 853.852	32.221	177.215	20,530.103 57,755.847	0.518	28,545.507 57,770.669
	Turbine natural gas	Natural Gas	5,500	hp	12	365	0.007	1.880	0.320	0.002	0.082	110.000	0.009	0.229	65.326	11.119	0.073	2.849	3,822.276	0.299	3,829.149
	Turbine natiural gas Turbine natural gas	Natural Gas Natural Gas	5,500 5,500	hp hp	12 12	365 365	0.007 0.007	1.880 1.880	0.320 0.320	0.002 0.002	0.082 0.082	110.000 110.000	0.009 0.009	0.229 0.229	65.326 65.326	11.119 11.119	0.073 0.073	2.849 2.849	3,822.276 3,822.276	0.299 0.299	3,829.149 3,829.149
Engines, SubTotal	Missellengeus	<u> </u>												66.997	1,886.579	2,318.622	71.508	444.230	148,252.177	17.206	148,647.908
Fugitives, Subtotal	Miscellaneous Tank - maximum emissions per year		120,000	bbl/d	24	365											18,204.158				
	Tank - most likely emissions per year		36,500,000 avg 38082	bbl/yr													15,170.132 96,285.310				
	Tank - most likely emissions over 20 years	1	avy 30082	bbl/d										<u> </u>			30,200.310				
							Emission Rates g/Sm3				Estimated Tonnes										
Natural Gas Flaring	Commission Flare (MMscf) Startup Flare (MMscf)	Synthetic Gas Natural Gas	na na	MMscf MMscf	24 na	140 365	0.000 0.000	0.000 0.000	12.000 12.000	0.100 0.100	1.000 1.000			0.000 0.000	0.000 0.000	92.665 366.988	0.772 3.058	7.722 30.582	670,373.856 92,820.995	988.584 136.881	693,111.283 95,969.255
Total Flared during commission	No operational faring													0.000	0.000	459.653	3.830	38.304	763,194.851	1,125.465	789,080.538
Flaring During Well testing	Resevoir fluid	1	9,400	bbl	24	2													3,050.971	0.895	3,071.560
	Diesel		9,400 600	bbl	24	2													253.796	0.895	3,071.560 253.796
	Total		10,000	bbl															3,304.767	0.895	3,325.356
															-		-				

EMISSION FACTORS AND ASSUMPTIONS

Emission Factors Used

Source	PM10	SOx	NOx	VOC	CO	CO2	CH4
AP42 - 3.4	0.0573	2.02	3.2	0.09	0.85	165	0.09
AP42 - 3.3	0.31	0.29	4.41	0.36	0.95	164	0.00247
AP42 - 3.1	0.0066	1.88	0.32	0.0021	0.082	110	0.0086
Vessels Manoeuvering	0.4	9	10.6	0.4	2.2	717	0.008
Vessels at Sea	0.2	8	13.2	0.2	1.1	652	0.004
Corinair	0	0	12	0.1	1.0	2430	0.2

Well Drilling and Completion

Prime Movers

General http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s04.pdf

- Use AP42, 3.4 for Large Diesel Engines as these are for engines > 600hp All emission rates are in Ib/MMBTu
- Note 1 Is the sum of filterable particulate less than 10 μm aerodynamic diameter and condensable particulate.
- Note 2 Assuming 2.0% SO2.
- Note 3 No VOC emission rate is provided therefore the value that has been selected is emissions equal to TOC. This represents a conservative estimate of VOC emissions as not all TOC emissions will be VOCs
- Note 4 Given as 'TOC as methane'. This will be a conservative estimation of the emissions of CH4 as all of the TOC has been equated to CH4, thus providing a conservative estimate of the GHG emissions

Vessels

General http://www.westcoastdiesel.org/files/sector-

marine/SMED%20Methodology%20for%20Calculating%20Emissions%20from%20Ships.pdf

MGO (Marine Gas Oil) is equivalent to No 2 fuel oil made from distillates only Emissions data are available for vessel 'at sea' or 'manoeuvring'. All of the vessels have been divided into one of these two categories based on the information provided.

AHTS and work (1) vessel will be operational around the rig - Manoeuvre Work (2) vessel is the supply boat that will travel between the rig and the port - At Sea Emissions at High Speed, Medium Speed and Low speed are available. This inventory assumes emissions at Medium Speed for all vessels (at sea or manoeuvring)

It is assumed that all of the vessels included in the calculations operate for the full 24 hours of the number of days of operation, unless otherwise stated

- Note 5 Assuming 2.0% SO2 even though TOR shows 0.095% S content. This represents a conservative assessment
- Note 6 No VOC value is provided so NMVOC is used; thus this is likely to underestimate the emissions of VOCs
- Note 7 It is assumed that the production vessels will be moored for 6 hours per day, leading to operation for 18 hours

Flowline/Umbilical/Injector and Installation, and FPSO Installation

Vessels

Assume support vessel will travel Assume the rest will be stationary

FPSO Installation

Vessels Work (1) will travel longer distances Other vessel (AH) is more stationary Tugs will tow FPSO to site over 2 days. (Then AH and work vessel will operate on site.)

Production

Support vessel will travel Tugs stay at the FPSO **Reciprocating (Crane)**

- General http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf
 - Use AP42, 3.3 for Gasoline and Diesel Industrial Engines (< 600hp) All emission rates are in lb/MMBTu
 - Note 1 The SO2 emission factor is based on the value provided by AP42. Given that the size of the engine is almost at the upper boundary for the recommended engine size (527 hp cf 600 hp), if a more conservative assessment is required, it is recommended to use the SO2 emission factor for the large diesel engines of 2.02.
 - Note 2 PM-10 = particulate matter less than or equal to 10 :m aerodynamic diameter. All particulate is assumed to be # 1 :m in size.
 - Note 3 No VOC emission rate is provided therefore the value that has been selected is emissions equal to TOC. This represents a conservative estimate of VOC emissions as not all TOC emissions will be VOCs
 - Note 4 Assumes 99% conversion of carbon in fuel to CO2 with 87 weight % carbon in diesel, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb.
 - Note 5 Assume all VOC emissions are equal to CH4 emissions. This will be a conservative estimation of the emissions of CH4 as all of the TOC has been equated to CH4, thus providing a conservative estimate of the GHG emissions

Reciprocating (Dual, Emergency Shipboard and tanker)

General http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s04.pdf

Use AP42, 3.4 for Large Diesel Engines as these are for engines > 600hp All emission rates are in lb/MMBTu

- Note 1 Is the sum of filterable particulate less than 10 μm aerodynamic diameter and condensable particulate.
- Note 2 Assuming 2.0% SO2.
- Note 3 For uncontrolled emissions
- Note 4 No VOC emission rate is provided therefore this has been selected as being equal to TOC. This represents a conservative estimate of VOC emissions as not all TOC emissions will be
- Note 5 Given as 'TOC as methane'. This will be a conservative estimation of the emissions of CH4 as all of the TOC has been equated to CH4, thus providing a conservative estimate of the GHG emissions

Natural gas turbines

General http://www.epa.gov/ttn/chief/ap42/ch03/final/c03s01.pdf

- Use AP42, 3.1 for Stationary Gas Turbines
- All emission rates are in lb/MMBTu
- Emission factors are based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60oF assuming uncontrolled emissions
- EF for high loads >80%
- Note 1 VOC emissions are assumed equal to the sum of organic emissions. This will thus be a conservative estimate of the VOC emissions
- Note 2 Based on 99.5% conversion of fuel carbon to CO2 for natural gas . CO2 (Natural Gas) [Ib/MMBtu] = (0.0036 scf/Btu)(%CON)(C)(D), where %CON = weight percent conversion of fuel carbon to CO2, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/106scf.

Fugitive Emissions from Tank

- Note 1 Given that the cargo oil tanks are contained within the hull, and that the tanks will be maintained in an inerted pressurised state diurnal temperature changes will not have an impact. Furthermore, with the vapour space filled with inert gas, we can conclude that breathing losses will be insignificant. Therefore only the working losses are predicted here..
- Note 2 Uncontrolled emissions. It is quite likely that there will be some sort of vapour recovery system (at the very least condensers), which could impact the emissions considerably. Should a condenser be used, the controlled emissions can be recalculated at the condenser
- Note 3 These are the emissions for a total of 20 years; this assumes that the average production per day decreases to 38,082 bbl/day from 120,000 bbl/day
- Note 4 This is based on the production capacity as opposed to the annual through-put, as it is assumed that while off-loading is occuring, there will be simultaneous operation.

Flaring

- General http://www.eea.europa.eu/publications/EMEPCORINAIR4/B926vs2.2.pdf Corinair Emission Factors All emissions are in g/Sm3
- Note 1 Instead of using Corinair emission rates for CO2 and CH4, the emissions have been calculated using a mass balance. The Corinair emission rates will depend on the composition of the gases used to determine these rates. As the composition of the gas of interest has been provided, it is more accurate to use a mass balance for these pollutants. A 99% combustion efficiency is assumed for these 2 pollutants
- Note 2 For Commissioning Result of flaring 43.3MMSCFD over 180 days
- Note 3 For Start-up Result of flaring 90MMSCF per month for a year.
- Note 4 No VOC value is provided so NMVOC is used; thus this is likely to underestimate the emissions of VOCs

Flaring during well testing

Note 1 The volume of a barrel is 158.99 L

Note 2 The composition of the diesel flared is not known; with diesel not being a defined term, it is not possible to know the exact composition. For the purpose of carrying out this assessment, we have assumed that the composition is 100% that of the average composition, which is C12H23.

GHG Emissions

Note 1 Based on CH4 GWP of 23, as in the TAR IPCC, 2001. Climate Change 1995: The Physical Science Basis, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)